Can Maths Help Support Businesses in Plastic Reuse? KTN's Report & Upcoming Event

Posted on Posted on 19 Oct 2020

KTN has published a report on 'Networks and Optimal Control for a Circular Economy' ahead of our event on 11th November looking at the role of maths in plastic reuse.

Solving the plastic waste crisis is a hugely complex task.  Plastics are used for good reason and in a multitude of products, but the end of life and long term sustainability of such materials has been grossly overlooked.  There is a now a need to make rapid and long term changes to when and where we should use plastics; how we value them as a material – looking for second (and multiple) life applications; how we design them to utilise the best of human behaviour, and how we hone business models and systems to use as little of them, and capture the most from them, throughout their life cycles.  The complexity means that no one person or organsiation has the answer and changes in one part of the system has implications on the others.

 

KTN and the UK Circular Plastics Network are hosting a 90 minute virtual forum on 11th November 2020 to consider the use of mathematical science in supporting plastic reuse. This event is to raise the profile and share knowledge on the kinds of opportunities that mathematics and modelling can have to gain insight into such topics as logistics, behaviour change and business models.  It will be of value to anyone in the plastics value chain from those in retail, waste management and polymer converters, through to those looking at re-use in the fast moving consumer goods sector and those moving to alternative materials. Please click here to register.

 
Below is the foreword from a summary report to the mathematical science and circular economy workshop at the Isaac Newton Institute in February. Click here to view the report.
 
 

In 2019, the UK Government made a bold (and legally binding) commitment to reducing greenhouse gas emissions to net-zero by 2050. In our journey to net-zero, moving to renewables across the globe will only address 55% of greenhouse gas emissions. To tackle the remaining 45%, transitioning to a circular economy, diet shift, emerging innovations and carbon capture and storage are all required. This transition from a linear to a circular economy offers a wide range of potential benefits (to the environment and economy):

  • Increased – sustainable use of resources, resource efficiency, material security, business resilience, net job creation, robust supply chains
  • Reduced – pollution (with associated health benefits), CO2 emissions, reduced waste.

 

This requires ability to configure whole-systems, change practices and behaviour, deploy appropriate solutions, AND understand how these impact the system. A circular economy is a systemic approach to economic development designed to benefit businesses, society, and the environment. In contrast to the ‘take-make-waste’ linear model, a circular economy is regenerative by design and aims to gradually decouple growth from the consumption of finite resources.

 

Within this larger ‘system of systems’ are multiple subsystems or organisational systems where whole value chains exist and interlink. At present, organisations that are redesigning themselves to be circular through product and service design, within their own operations and across their value chain can only go so far as we still exist within a linear economy. No organisation, region or country has achieved 100% circularity yet. There is a fine balance between transforming the wider system from a linear to a circular one whilst unlocking the circular potential across these subsystems that are interlinked.

 

Collectively, there is a need to use a wide variety of tools and instruments to create the right environment for this systemic shift such as finance, policy, education, alternative business models. The mathematical sciences are a broad set of approaches and methods that can be  used to help unlock and de-risk the commercialisation and deployment of some of these business models such as last leg logistics for example.

 

The mathematical sciences are unique in their adaptability in tackling challenges at sub-system, component-level and broader, systems-level challenges; and providing the language which unites them. Sometimes a broader mathematical framework for describing systems-level can open our eyes to how system-level dynamics behave. For example, complexity science applied to interacting relationships, or entropy arguments used to describe holistic resource flows, or the language of mathematical uncertainty to account for behaviour and stochastic processes. At the subsystem level, the mathematical sciences can provide a rigorous quantitative backbone for modelling logistics in circular cascades, or rationalising design decisions in new product/process offerings.

-KTN’s Matt Butchers and Emma McKenna

 Click here to view the report in full.

 

KTN and the UK Circular Plastics Network are hosting a 90 minute forum on 11th November to consider the use of mathematical science in supporting plastic reuse. 

 

This virtual forum aims to introduce some of the challenges in plastics circular economy practices and adoption, and provide some insight into the role the mathematical sciences might have in this important and exciting area. This forum will:

  • Present some of the ideas discussed at the Isaac Newton Institute Circular Economy session.
  • Focus on some key mathematical science / circular economy overlap areas.
  • Initiate some potential collaborations between business and the mathematical sciences in this area.

 

Provisional Agenda:

14:00 – 14:05 Welcome

14:05 – 14:20 Challenge in Plastics Reuse

14:20 – 14:50 Mathematical Science Response

  • Bill of material decomposition and revalorisation
  • Designing trials for reuse at scale
  • Collecting 100 % of plastic packaging
  • Modelling Cooperative Behaviour

14:50 – 15:30 Moderated Forum Discussion

 

We have also set up a page to submit any questions you may wish to pose to the panel ahead of the event – you can access that here.

 

Register here

Become
a Member
of UKCPN

Sign up for free to receive news, event alerts & funding opportunities.
Click here to sign up to UKCPN